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In~troucio
The dinitramide anion, N(NO2)2, is a new oxide of nitrogen that has recently been

prepared and is now known in the form of a number of its salts [ 1,2]. There is particular interest

in the ammonium salt, NH4N(NO2G2, as a potentially useful energetic material [ 1], and there have

accordingly been several investigations of its decomposition behavior [1-6]. We have recently
completed a computational study of the energetics of some possible decomposition steps of the

dinitramide anion [7], in which we used a non-local density functional procedure to determine the

energies required for the bond-breaking reactions (1) - (3):

N(NO 2)_ NNO 2 + NO (

N(NO2)2 2- NNO2 + NO2 (2)

N(NO2)2 2 = NNO2 + NO2  (3)

Our conclusion that eq. (3) is the most likely (calculated dissociation energy = 45.5 kcal/mole),

followed distantly by eq. (2), is in agreement with observed collision-induced dissociation

processes [2].

In the case of ammonium dinitramide, or other dinitramides under acidic conditions,

decomposition may involve the initial formation of dinitraminic acid [ 1,3,4,6]:

NH4N(NO2)2 -- NH3 + HN(NO 2)2  (4)

N(NO2)2 + H+ -* HN(NO 2)2  (5)

Accordingly, our objective in this paper is to examine dinitraminic acid and some of its possible

decomposition routes. These include the analogues of eqs. (1) - (3), in which an N-NO2 bond is

broken either homolytically or heterolytically. In addition, acting upon an earlier suggestion [ 1],
we examine the effects of protonating dinitraminic acid, a conceivable mechanism under acid

catalysis.

Methods

Optimized geometries were computed at the HF/6-3l G* and MP2/6-31G* levels for all of Fro
the molecules and ions listed in Table 1, using GAUSSIAN 92 [8]. A single-point non-local Iii

density functional energy calculation was also carried out in each case with the program deMon 0

[9], using the Gaussian DZVPP basis set (which is comparable to the 6-31 G**) and the MP2/6- ed

31"G* geometry; the exchange-correlation energy was calculated using the generalized gradient

approximation (GGA) [10,11]. The effectiveness of non-local density functional methods in
computing reaction energetics is well-established [12-16]. All AE values presented in this paper
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include corrections for differences in zero-point energies, except where otherwise indicated; these

are based on HF/6-3 IG* vibration frequencies.

Results and Discussion

The first point of interest is whether the hydrogen in dinitraminic acid is on the central

nitrogen or on one of the oxygens. As can be seen in Table 1, all three computational approaches

agree that the nitrogen is the preferred location for the hydrogen, structure 1. The calculated

HF/6-31 G* vibration frequencies for 1 show no imaginary values, confirming that it corresponds

to an energy minimum. The density functional and the ab mwio results differ in predicting the

order of stabilities among the conformers in which the hydrogen is on an oxygen. The DF-

GGA/DZVPP results show 2 to be the most favored among the latter, 3 kcal/mole higher in energy
than 1, whereas MP2 calculations, ours and others [17], indicate 3 to be the most stable. (Both 2

and 3 have been shown by the vibration frequency test to be at energy minima [17].) Experimental

observations do support the existence of a tautomeric equilibrium [1,2], which we predict to be

between 1 and 2, eq. (6). (In evaluating these various results, it should be noted that the total

range in energy of the five isomeric forms of dinitraminic acid is only 7.1 kcal/mole at the DF-

GGA/DZVPP level and 10.3 kcal/mole at te MP2I6-31G*.)

0% 10

N-O ,N-O
-- _ N2 NH (6)

H -N \N 0N i-
N--O -._
/I-- I

0' 0'

1 2

The MP2/6-31G* optimized geometries of 1 and 2, given in Table 2, are consistent with

the structures shown in eq. (6). The O-H distance of 1.581 A indicates the presence of an

internal hydrogen bond in 2.

From the data in Table I can be calculated the energies involved in a number of different
processes; the results are given in Table 3. Reactions (a) and (b), for which AE represents the

ionization p isil and the negative of the electron affinity of NO2, permit comparisons with

experimental data; ftse are also in the table. It is notable that the DF-GGA/DZVPP//MP2/6-313G*

values are considerably more accurate than the MP2/6-31G*//MP2/6-31G*, which are 205.8 and

-21.4 kcal/mole, respectively. For the heterolytic bond rupture represented by reaction (c), our AE

is close to the range estimated by Schmitt et a for the gas phase AH of deprotonation of

dinitraminic acid, between 299 and 310 kcal/mole, based upon observed proton transfer tendencies
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[1,2]. For reaction (d), they infer from the observed failure of N(NO2)2 to transfer an electron to

several molecules with known electron affinities that AE > 58.8 kcal/mole.

Their analysis of reaction (c) led Schmitt et al to describe HN(NO2)2 as a very strong gas
phase acid [ 1,2]. Earlier we have reached a similar conclusion for aqueous HN(NO2)2, predicting

its pKa to be -5.6 [18].

In reaction (e), the H-N(NO2)2 bond is cleaved homolytically. Our computed dissociation

energy, 95.8 kcal/mole, seems reasonable in view of the experimental values for the H-N bonds in

HN 3, 92 kcal/mole, and N2H4 , 87 kcal/mole [19].

Reactions (f) - (h) are the analogues, for dinitraminic acid, of the N-N bond breaking

reactions shown in eqs. (1) - (3) for the dinitramnide anion. The homolytic processes have

essentially the same energy requirements; compare eq. (3), 45.5 kcal/mole [7], and reaction (h),
44.0 kcal/mole. (For the latter, Michels and Montgomery have estimated 48 ± 8 kcal/mole [17].)
The energies needed for the heterolytic cleavages are all greater, increasing in the order,
eq. (2) < reaction (f) < reaction (g) < eq. (1).

More promising as a decomposition route is the protonation of dinitraminic acid, under acid
catalysis. Following the suggestion of Schmitt et al [1], we examined two possible protonated
forms:

o .0 H

N-0 IN-O
+/,N OH '-OH

H-N N

0' 0'

4 5

At the HF/6-3 IG* level, we were able to obtain optimized geometries for 4 and a rearranged form

of 5 (in which one of the hydrogens had migrated to an oxygen in the other NO2 group). More

important, however, is that we were unable to do so at the MP2/6-31 G* level. The inclusion of
correlation effects caused both 4 and 5 to come apart; 4 broke up into NO+ and HN(NO2 H), and 5

into NO+, N20 and H20. The fragments obtained from S are fully consistent with the

decomposition products observed by Schmitt et al [1], N20 and HNO3, and this would also be

true for 4 if the HN(NO2H) were to break up into N20 and H20. (We find the latter process,

HN(NO 2H) -+ N20 + H20, to be energetically favored; AE, without zero-point corrections, is

-34.1 kcailmole.) The net acid-catalyzed decomposition is shown in Table 3 as reaction (i), and is
calculated to release 30.2 kcal/mole of energy. This exceeds the energy output for the analogous
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decomposition of N(NO.)2, eq. (7), by the difference between the protonation energies of NO0

[20] and N(NO2)2, which is in the neighborhood of 12 kcal/mole.

N(NO2)2 -+ N20 + NO (7)

We have used non-local density functional theory, in conjunction with MP2/6-3 IG*

geometry optimization, to establish the structure of dinitraminic acid as 1, in tautomeric equilibrium

with 2, and to compute the energetics of several processes that may be involved in its

decomposition. These include the homolytic and heterolytic ruptures of the H-N and N-N bonds.

Protonation of dinitraminic acid is shown to lead to its fragmentation in a manner consistent with

the observed products of its acid-catalyzed decomposition.
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Table 1. Calculated energies.

Energy (hartrees)

Molecule or ion HF/6-31G*//HF/6-31G* MP2/6-31G*//MP2/6-31G* DF-GGA/DZVPP//
MP2/6-3 IG*

NO2

H-NN/ -463.05281 -464.30329 -466.12085H-1

NO2

0
N"O

NI \H 2 -463.03711 -464.28556 -466.11598

N-O
0

O-H
NLO

3 -463.03952 -464.29106 -466.11207
N-.,O"NO

HO

"0
0

0

NI "H -463.03377 -464.28690 -466.10957

N-uO
10

N(NO2)2 -462.54392 -463.78334 -465.60919

•N(NO2)2 -462.44083 -463.64534 -465.45334

HN(NO 2) -259.01062 -259.63255 -260.69479

HN(NO2)- -259.06872 -259.76920 -260.83243

HN(NO2 )+ -258.57980 -259.29300 -260.31000

(continued)

- - - - -- - - - -- - - - -
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Table 1. Calculated energies (continued).

Energy (haae )
Molecule or ion HF/6-31G*/MHF/6-31G* MP2/6-31G*/IMP2/6-31G* DF-GGA/DZVPP//

MP2/6-31G*

HO-NO 2  -279.44426 -280.16522 -281.25793

N20 -183.68012 -184.20414 -184.90574

NO2  -204.03149 -204.56420 -205.34645

NO2 -203.67781 -204.23933 -204.98106

NO -204.06567 -204.59773 -205.41377
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Table 2. MP/6-3 1G* optimized geometries of 1 and 2.

Molecule Distance (A) Angle (deg)

N-N: 1.460 N-N-N: 115.3
N-Oh H-N: 1.026 H-N-N: 105.6

H-N/ 1 N-0a: 1.231 N-N-Oa: 112.4
\ N-Ob: 1.222 N-N-Ob: 117.8

N-0 O-N-O: 129.7

0

Oa Na-Nb: 1.322 Nb-Na-Nc: 117.4
% Na-Nc: 1.431 Na-Nb'Oa: 119.5

/Nb-Ob 2 Nb-Oa: 1.222 Na-Nb-Ob: 125.3
Na H Nb-Ob: 1.362 Na-Nc-0c: 111.7

N H Nc-Oc: 1.226 Na-Nc-Od: 123.5

Nc-Od Nc-Od: 1.253 O-Nb-0: 115.2
O Ob-H: 1.010 O-N--O: 124.8Od'"H: 1.581 Nb-Ob-H: 104.4

N--Od-H: 101.3
O'--H-O: 148.1
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Table 3. Calculated AE for various reactions, in kcal/mole.a

Reaction AE (DF-GGA/DZVPP//MP2/6-3 1 G*)

(a) NO2 -- NO+ + e- +231.2 (+225.7)a

(b) NO2 + e- -NO -42.6 (-52.4)a

(c) HN(N0 2)2 -- H+ + N(NO 2)2 +312.9

(d) N(NO2)2 -- "N(N02 )2 + e- +96.6

(e) HN(N0 2)2 - H. + "N(N0 2)2  +95.8
(f) HN(NO 2 )2 - HN(NO2)- + NO+ +19 2.9 b

(g) HN(NO2)2 -- HN(NO2)+ + N02- +2 4 9.2b

(h) HN(NO2) 2 - HN(NO2) + "NO2 +44.0

(i) HN(NO2)2 N2 0 + HNO3  -30.2

aExperimental value, taken from ref. 19.

bZero-point energies are not taken into account.


